§ 64.17 Minimum tank thickness.

- (a) Except as allowed in paragraph (b) of this section, a tank with a diameter of—
- (1) 6 feet or less must have a shell and head of 3/16 inch thickness or more; or
- (2) More than 6 feet must have a shell and head of 1/4 inch thickness or more.
- (b) If the tank has additional framework to guard against accidental puncturing of the tank, the shell and head thickness must be 1/8 inch or more.

§ 64.19 External pressure.

- (a) A tank without a vacuum breaker must be designed to withstand an external pressure of 7½ psig or more.
- (b) A tank with a vacuum breaker must be designed to withstand an external pressure of 3 psig or more.

§64.21 Material.

The material for a tank must meet the requirements in Division 1 of section VIII of the ASME Code.

[CGD 73–172, 39 FR 22950, June 25, 1974, as amended by CGD 84–043, 55 FR 37410, Sept. 11, 1990]

§64.23 Gasket and lining.

Each gasket and lining must be made of material that is—

- (a) Chemically compatible with the product for which the tank is approved;
- (b) Resistant to deterioration from the product for which the tank is approved.

$\S 64.25$ Cross section.

A tank must have a cross section design that is—

- (a) Circular; or
- (b) Other than circular and stress analyzed experimentally by the method contained in UG-101 of the ASME Code.

[CGD 73-172, 39 FR 22950, June 25, 1974, as amended by CGD 84-043, 55 FR 37410, Sept. 11, 1990]

§ 64.27 Base.

The base of an MPT must be as wide and as long as the tank.

§ 64.29 Tank saddles.

If a tank is not completely supported by a framework, it must be supported by two or more external saddles, each of which extends to 120 degrees or more of the shell circumference.

§ 64.31 Inspection opening.

An MPT must have an inspection opening that is designed in accordance with Division 1 of section VIII of the ASME Code.

[CGD 73–172, 39 FR 22950, June 25, 1974, as amended by CGD 84–043, 55 FR 37410, Sept. 11, 1990]

§ 64.33 Pipe connection.

Each pipe connection that is not a pressure relief device must be fitted with a manually operated stop valve or closure located as close to the tank as practicable.

§ 64.35 Bottom filling or discharge connection.

If an MPT is designed with a filling or discharge connection in the bottom, the connection must be fitted with a bolted blank flange, threaded cap, or similar device to protect against leakage of the product, and a manually operated valve that is located—

- (a) Inside the tank and operated outside the tank; or
- (b) Outside the tank but as close to it as practicable.

§64.37 Valve and fitting guard.

Each valve and fitting must be protected from mechanical damage by—

- (a) The tank;
- (b) A tank saddle;
- (c) The framework; or
- (d) A guard.

§ 64.39 Valve securing device.

Each filling and discharge valve must have a securing device to prevent unintentional opening.

§ 64.41 Stop valve closure.

A stop valve that operates by a screwed spindle must close in a clockwise direction.